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Vortex solitons: Mass, energy, and angular momentum bunching
in relativistic electron-positron plasmas
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It is shown that the interaction of large amplitude electromagnetic waves with a hot electron-pasippn (
plasma(a principal constituent of the universe in the MeV epplgads to a bunching of mass, energy, and
angular momentum in stable, long-lived structures. Electromagnetism in the MeV epoch, then, could provide
a possible route for seeding the observed large-scale structure of the universe.
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[. INTRODUCTION the annihilation process” +e~— y+ y dominates, and the
e"e” pair concentration goes down. Since the equilibration

It is widely believed that the currently observed large-rates are fast in comparison with the changes in plasma pa-
scale structure of the universthe clusters and superclusters rameters, an equilibriura-p plasma should be present in the
of galaxie$ grew gravitationally out of small density fluc- pMev epoch of the early Universe. It is this plasma-
tuations[1]. The imprint of this density variation in the early gominated era in which we will seek the seeds for future
universe was left on the cosmic microwave background ragircture formation.
diation in the form of spatial temperature fluctuations. The  Rg|ativistic e-p plasmas were investigated quite exten-
gravitati(_)nal origin, however, can be only a part of the Story;sively [5]. Tajima and Taniut{6] suggested that collective
the gravity can enhance, but it cannot produce these fluctuas; osses in these plasmas could lead to interesting conse-

tions. The quest for the physical procgs which produced quences for structure formation. In tleep plasma of the

the initial matter-density fluctuations has led to the eMer-. v Universe localized low frequency electromaanetic
gence of the following two leading mechanisms: inflation y ' d y 9

and topological defec{®,3]. Of these the former is, perhaps, (EM) waves @‘_"<T) C_OUId propagate as an envelope SO“T
the most thoroughly investigated. According to this mechalon dué to the interaction with sound waves. Plasma density
nism there exists, in the evolution of the universe, an eamyarlatlons related to the;e sqhtons cou!d potentially be useful
inflationary period in which the universe expands so rapidlytoward structure formation in the Universe. However, the
(exponentially that quantum fluctuations become trapped inanalysis[6] was based on a one-dimensional formulation,
the expansion. By the end of the inflation, therefore, smalfnd the corresponding soliton solutions are likely to be un-
irregularities covering a wide range of length scales permeatgtable in higher dimensions. Berezhiani and Mahgjdrar-
the entire universe. Gravitational instability then acts ongued that in the MeV epoch of the Universe, althowgh
these small initial irregularities, and enhances the concentrgairs form the dominant constituent of the plasma, a minority
tion of matter from which galaxies and clusters of galaxiespopulation of heavy ions is also present due to the baryon
eventually emergf4]. The theory of such processes is, by noasymmetry. They were able to show that, under appropriate
means, complete, and much needs to be done to determigonditions [when the plasma is transparent, i.e3> w,,
whether tiny quantum fluctuations can provide a strongvherew (wg) is the pulseplasma frequency, the resulting
enough template for gravitational condensation to finally cree-p—ion plasma supports the propagation of stable, nondif-
ate the structures that we observe today. Cosmologists, usfracting, and nondispersing EM pulséight bullets with a
ally, rely on the speculated existence of nonbaryonic darkarge density bunching. It was further shown in R&f that
matter to augment the gravitational force to aid and accelerthese bullets are exceptionally robust: they can emerge from
ate the structure formation. The question is far from settleda large variety of initial field distributions, and are remark-
It is natural, then, to look elsewhere for the source of theably stable. Note that the characteristic dimensions of such
seed density “fluctuations.” An obvious possibility is to ex- matter-filled light pulses are proportional to the electron to
plore if electromagnetic interactions taking place in a plasmaon density ratio, and tend to be considerably larger than the
(known to be the source of a whole variety of linear as wellskin depth §=c/w¢). The implication is that when one
as nonlinear wavesan cause the required density perturba-deals with EM structures whose characteristic dimensfohs
tions. In the standard cosmological model of the hot Uni-the spatiotemporal inhomogeneitiese of the order of the
verse(the Big Bang mode) it is estimated that temperatures skin depth, the baryon asymmetry affects can be safely ne-
as high asTi~10'° K~1 MeV prevail up to timesof~-1 s  glected, and the dynamical system can be assumed as a pure
(t=1 sec) after the Big Bang. In this epoch, the main con-electron-positron plasma.
stituents of the Universe are photons, neutrinos, and an- Inthe present paper we examine the propagation of strong
tineutrinos, ande-p pairs[1,4]. As the plasma cools down EM radiation in a hot pure-p plasma, with the explicit aim
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of finding soliton-type solutions. The plasma is assumed tamentum vectop™ is in units of mec. The particle number
be transparent. We demonstrate that the dynamics of the EMensity n* is normalized by the equilibrium density,
field envelope is governed by a generalized nonlinear Schro— ng , and the plasma temperatufE() is measured in units
dinger equatioriNSE) with a defocusing nonlinearity. In one ¢ mec2. The pressur®*=n*T*, wheren” is the density
dimension, this equation admits dark soliton solutions, whil ' Ll Lo

q 8n the rest frame of the fluid elemenh{=n*/y"). The

in two dimensions, the so called vortex soliton solutions arg | nction G(z) defines the “effective” temperature depen-

also possible. dent mass of the particles, and has the following limiting

Dark solitons exist as dips on a continuous-wave baCk'expressionsG~1+5/2z for z>1, andG~4/z if z<1.

groEn? .ﬂe'd' ?.fmg stable N ck))n?kdlmednsmn,chey appear ﬁs From Eqs.(1)—(3) it is straightforward to derive the adia-
ark-stripe solitary waves in bulk medium. However, suc Psatic equation of statE10];

stripes are unstable to transverse modulations, which resul
in the induced generation of vortices with alternating polari- Nt /T
ties. ———exp(—G*/T*)=const, (5)
Vortex solitons, which are the most fundamental two- v Ko (1/T7)
dimensional2D) soliton solutions of NSE’s with an angular
21 phase ramp, appear as local dark minima in an otherwiswhich, at nonrelativistic temperatur& t<1), reduces to the
bright background. Vortex solitons were recently observed irstandard adiabatic relatigm,/(T=)*?=cons{ for an ordi-
materials with a defocusing optical nonlinearity—the dy-nary gas. In the ultrarelativistic lim[tT=> 1], as expected,
namics of laser beams in these materials is generally deEq. (5) describes the photon gés, /(T*)3=cons{. In the
scribed by the NSI9]. Since electromagnetic vortices carry ultrarelativistic case, one should take into account the radia-
angular momentum that is conserved during propagation, théve pressurePr=oT* (o= m/45:3c%). For simplicity we
generation of vortex solitons in a@p plasma is a potent neglect this less important effect for the current consider-
mechanism for creating domains with definite angular mo-ations. Note that in the MeV epoch, the plasma temperature
menta, even out of an initial field distribution devoid of an- T*~m.c? (i.e., z~=1) and G~4, leading to an effective
gular momentum. To keep the total angular momentum ainass ofe-p pairs of mgs~4m,. Since the particle masses
zero, domains of equal and opposite angular momenta mugke just a few times larger than their rest mass at these tem-
be created in pairs. peratures, the-p plasma can be considered as a two com-
ponent fluid rather than a photon gas.
Il. FORMULATION We consider the propagation of circularly polarized EM
, L . wave with a mean frequenay, and a mean wave numbler
We use the following set of relativistic hydrodynamic g15ng thez axis. The choice of circular polarization is not
equations in dimensionless forf]: restrictive; it simplifies the analysis by preventing harmonic
generation. The vector potential can be represented as

d. Gty 1 (gpi_— =+ IA _ .y 1
w(C ) sat T Ve, (D) 1 -
AL=§(X+|y)AL(rL,z,t)exp(lkz—lwt)+c.c., (6)
di + + 1 + _aA + —
G (G P+ VP =5— 2" X(VXA)]FV¢, whereA, is a slowly varying function of andt (k>V,
n* . .
5 w>4;). The unit vectorsx andy define two mutually per-
2) pendicular axes in the plane normal to the direction of wave
nt propagation. The Coulomb gauge condition leads to the re-
—+V-(n0™)=0, (3) lation A,=(i/k)(V -A,)<<A, . Consequently the effects re-
at lated toA, will turn out to be negligibly small. We shall now

follow standard methods to analyze the system. In the slowly
varying amplitude approximation, the transverse, high-
frequency component of the equation of motion yields the
2 simple relation between the particle momentum and the vec-

d ; .
EA—VZAJrEVQH(n’v’—n*v*):O, (4 tor potential[ 7]:

along with the field equatiofiin the Coulomb gaug& - A
:0)

p, G =FA, . (7)
where p©=y*v= with factor y*=[1+(p~)?]¥% d. /dt
=dlot+v.-V is the comoving derivative; andG™ The low frequency motion of the plasma is driven by the
=K3(LTF)/K(1/T*), with K, nth order modified Bessel ponderomotive pressufe-(p~)?] of the high frequency EM
functions of the second kind. The superscript labels the parfield, and it does not depend on the sign of the particles’
ticles, electrons €), and positrons(+), respectively. In  charge. If we assume that in equilibrium the electron and
these equations the time and space variables are in units pbsitron fluids have equal temperaturd & T,), their ef-
the electron plasma frequeney= (47e’ny/my)*2, and the  fective masses will also be equ&t =G), and the radiation
collisionless skin deptle/w,, respectively, the field poten- pressure will impart equal low frequency momenta to both
tials (¢, A) are in units ofmsc?/e, and the relativistic mo- fluids, allowing the possibility of overall density changes
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without producing charge separation. The charge neutralityhich is readily solved for an explicit expression for the
conditionsn” =n"=N, ¢=0 will be assumed in the rest of longitudinal momentum in terms of the transverse vector po-

this paper. It is also evident that the symmetry between théential,

two fluids keeps their temperatures always eqdal£T) if
they were equal initially.

A considerable simplification results when we invoke thep=v97§g 1

wide beam approximatiofiL1l]. We assume that the longitu-

dinal variation of the field envelope is much stronger than

the transverse variation, i.el,,, the characteristic length
along the propagation direction, is much shorter than the

characteristic length in the transverse plane. This approxim:f
tion, coupled with charge neutrality, allows us to extract,

from Egs.(1) and (2), the following, leading order descrip-

Gy )
_ GZ_GZ_ A 2\1/2 , 14)
—Govg)’g(yg 0 |ALI%) (

wherey,=1/(1-v%)"2is the “effective relativistic factor”
associated with the group velocity of the wave; it is not to be
>onfused with the particlee. The continuity equation can be
similarly integrated to determine the particle dengiajter
using Eq.(14) for p]:

tion for the low frequency response: the equation of motion

dG +1 g NT 1 JA o

&CP NGz Y T 26 ®
and the “energy” conservation equation

d 1aNT 1 dAJ? o

&CT NI Yy 296 at ©

Here we have used the condition that the ponderomotive Ziwf?prLVfAﬁr
pressure gives equal longitudinal momenta to both electrons

and positrons |§, =p). Note that the assumed circular po-
larization of the EM field insures that the relativistic factor
does not depend on the “fast” time (@) scale; it can be
written as

1/2
A7

e P

y=|1+ 2 (10

Substituting Eqs(6) and(7) into Eq. (4), we find that the
slowly varying amplitudeA, must satisfy

2iw(d+vgd)A, + VA + (55— A, +(0®—K?)A,
11

wherevy denotes the group velocity of the carrier waves;
vg=do/dk=k/ o.

We are still not quite done with simplifying assumptions.
We seek solutions which vary slowly with time in a frame
comoving with the wave, that is, in a frame propagating wit
the group velocityv,. The transformationg=z—v4t and
7=t, with the conditionv4d,>d., help implement this ap-
proximation. Equation$8) and(9) can now be combined to
derive

J
a—g[G(v—vgp)]=0; (12

N

G (y]

Vg%qg
GS_GZ_|A¢|2)1/2

(15

Substituting Eq(15) into Eq.(11), we obtain the follow-
ing nonlinear Schrdinger equation for the complex ampli-
tudeA, :

1
2
— AL
g
2

+ —
Go 1

Ug’}/gGO
T 2R~2 2 2\1/2 A=
(YgGo_G _|AJ.| )

0, (16)

where the wave frequenay satisfies the dispersion relation
0?=k?+2/G,, implying that the parameter Yg
=w\Go/2 [y4=(wlwe) VGo/2 in physical quantitiels A set
comprising Eq(16), and the equation of staté) [in which
relation(15) could be easily incorporatédonstitutes a com-
plete description of the dynamics of strong EM waves in
relativistic e-p plasma in the wide beam approximation.

We remind the reader that E({.6) was derived under the
assumptiond, >V, (i.e., L,<L,). In spite of this, for a
highly transparent plasmayg>1) the second, “diffrac-
tive,” term can be of the same order or even greater than the
third, “dispersive,” term. For this paper, we will not attempt
the general solutions of this quite complicated set of equa-
tions; we will simply deal with waves for which the plasma
is so highly transparent that the diffractive term dominates.

hUsing y,Go>G, and neglecting the dispersive term, the

NSE simplifies to

1
i&TALJrEVfAL—Z (17

where the following renormalizations are used2wGq
—7andr, /{2Gy—r, .

the implied constant of motion is to be determined from the The vector potentialA, | is restricted from above by the

boundary conditions. We demarmand A, to be zero at
infinite &, but allow them to be finite as, — <. Integrating
Eq. (12) leads to [ is the particle temperature at infinjty

G(T)(y—vgPp)=GCo(To), 13

condition |A, |<y4G,. This restriction is necessary for the
validity of the hydrodynamic treatment for the particles. For
larger amplitudes, the electromagnetic waves are overturned,
causing a multistream motion of the plasma requiring a ki-
netic description. Note that despite the upper bound on the
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amplitude of the vector potential, the EM field can be still =V | . Vortices can exist despite the potential nature of the
relativistically strong, i.e., the normalizeh, |>1, since “fluid” flow. Indeed, the Madelung transform is singular at
Yo>1. points wherep=0; these are just branch points where the
real and imaginary parts of the field become zero, while the
IIl. STATIONARY SOLUTIONS velocity circulation$v -dl=27m, where the integration is
done on a closed path enclosing the singular point, and the
In the NSE derived above the diffractive and nonlinearintegerm is known as the topological “charge” of the vor-
terms have opposite signs and as a consequencéliy. tex. Thus the vortex soliton is a topological structure; it can
does not admit transversely localized SO|Uti0§H$O called disappear on|y when annihilated by a vortex soliton of the
bright solitong. Any localized initial EM field, therefore, opposite charge. The development of the transverse instabil-
will undergo transverse spreading during propagation. They of a dark soliton has close parallels in hydrodynamics: for
NSE with a defocusing nonlinearity can, however, supporinstance, the Kelvin-Helmholtz instability, which occurs
stationary structures with asymptoticallgt infinity) nonva-  when the boundary between two flows develops so-called
nishing fields. Dark solitons in one dimensions, and vortex‘yortex streets” [14]. Since a dark solitary stripe does not
solitons in two dimensions, are the fundamental representgarry any topological charge, it is evident that vortices have
tives of such solutions. In the extreme low amplitude limit, tg be born with equal and opposite topological charges.

|A,|<v4Go, Eq.(17) reduces to a NSE with a cubic nonlin- |t js straightforward to show tha-p plasmas can support
earity. In one-dimensional geometry we have large amplitude dark solitons as well. In the general case
(amplitude large, but subject to the conditiph, | < y4Gy),
oA 1 FAL 1 IA,?A, =0 1g Ve cannot construct analytic solutions even in one dimen-
1L I

sion. It is possible, however, to extract the general properties
of the solution by using reasonably simple techniques, espe-
This equation is exactly integrable via the inverse scatteringially whenA, has the time dependence

method[12], and its one-soliton solution can be written as . _
[9] A(X,7)=A(X)exp(—i\T), (22)

T 2 gx? yéGé

whereA=A, /4G, is the normalized amplitude, and is al-
ways less than unity. Hereis so-called nonlinear frequency
where shift. This time dependence implies that the amplitude square
is stationary(what follows, therefore, are classed as station-
O = aAy(X— BALT). (20)  ary solutions, and the dip of the wave does not propagate in
the comoving frame with quite the group velocity of the
Here A, is a measure of the asymptotic fields at the spatialinear wave.
infinity, and @ and B are constants wittw?+ 8?=1. The The 1D equatior{18) now can be cast in the form
solution, with a nonzero value at the center of the dip, is
termed the “gray soliton” to distinguish it from the “black 2. LA
soliton” (zero amplitude at the djpcorresponding tg8=0. @A“LV (A)=0, (22
Dark solitons of this class of NSE’s do not have any thresh-
old values for their excitation, unlike bright solitofisf the  where the prime oV denotes the derivative with respect to
appropriate equatioipswhich do. In other words, dark soli- A and
tons can be created by an arbitrary small initial dip on a
homogeneous background. AL A2 v
In two transverse dimensions, a dark soliton represents a VIA)=(AF2)ATHAVI-AT—4 23

dark stripe imposed on a homogeneous bright background. o qtes the potential. The resemblance of(88) to the one

is well known that such a stripe is unstable to transverse,peyeq by a Newtonian particle in a nonlinear potential sug-
long wavelength modulatiorjd.3]. The instability causes the gt an obvious method for analysis. One can easily prove
&hat a bounded solution exists provided the nonlinear fre-
“quency shift is positiveX>0). The profile of the potential,
shown in Fig. 1 for\ =1, reveals that the dark soliton solu-

+1,+22,... attheir core. . . . N
Vortex soliton solutions of the NSE were first suggestedt'on may re5|-de in the potential well. EquatidgA/dx” with

by Pitaevskii[15] as topological excitations in an imperfect Z€ro, we estimate the upper bound An

Bose gas in the superfluids. The ability of some electromag-

netic systemglike the e-p plasma to simulate fluid dynami- A =/1
. . ub

cal phenomendlike vortex formation can be demonstrated

by applying the Madelung transformatién = \p exp() to

the defining equations. The transformation converts thdhe lowermost value of the amplitudld| is zero, that is, we

original set to one that is similar to the fluid hydrodynamic recover the dark soliton. Note that for small valuesiof

equations with a fluid “density”p and fluid “velocity” v (<1), Ay—0, while A, —1 for A\>1.

A, (X, 7)= 7,GoPo(atanh® +iB)e A0, (19)

polarities[14]. The vortices are dark holes on a bright back
ground, with a nested phase dislocation of the onaer

2 2

N+2

(24)
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FIG. 1. The form of the potentiaf(A) in Eq. (22) is shown for FIG. 2. The form of the solitonlike solutions for the normalized
A=1. potentialA is shown form=1, 2, and 3 in the case af=1.

Similarly one can show the existence of vortex soliton

solutions in two dimensions. We shall again seek stationar?UItS of the simulation will be discussed in a later publica-
solutions in 2D polar coordinates,@). The ansatz ion. The stability of the vortex soliton solution is another

issue that has to be dealt with. It is usually believed, how-
A=A(r)exp(imf—ix7), (25)  ever, that vortices witm=*1 are topologically stable,
whereas vortices with larger value of the “chargal may
with A(r) real, and with the perpendicular Laplacian opera-decay into “single-charge” vortices.

tor given by In three dimensions the vortices form the so-called vortex
line (it looks like a pancake with a hole in the center, hang-
, & 1d m ing and moving along the wire-vortex lineEffects related to
Vi :ﬁ + rdr r_z (20 the finite group velocity dispersion may lead to a transverse
instability of the vortex line. All these interesting effects are
converts Eq(17) to the ordinary differential equatidsimi-  left for future studies.
lar to Eq.(22)] We would like to emphasize that the electromagnetic
fields associated with dark and vortex solitons are asymptoti-
d2 . . 1dA m2. cally nonvanishing(at infinity). Due to the generally ac-
ﬁAﬂL ViIA==r4grt r_ZA’ (27)  cepted requirement that in physical system, the fields be lo-

calized in all directions, these objects have received much
less attention than their localized cousins. However, in recent
. : . experiments studying laser field dynamics in different kinds
?xlr)re_35|on gl\t/ent_b?{,Ecq23l). It er v:;}are t(I)Eexztend th? d pbar- of optical media, it was demonstrated that dark and vortex
icle In a potential” analogy further, a(27) cou e i§’Oolitons can be readily created as superimpositions upon a
: . X = calized field backgrounf®]. This background can be just a
nght-hand .S'de approaches zero n the limit o, Eq. (27) few times wider than the soliton width. During propagation
gives premse!y Athe 1D asympj[onc vah@Eq..(2.4) for the the background spreads out, reducing its own intensity. In
vector potentialA]. The behavior at the originr&0) is  |ight of these experiments let us try to put in perspective the
totally different; the regular singular point at the origin  current study of dark and vortex solitons éap plasmas in
=0 forces the acceptable to vanish form=1 asr™. The the early Universe. Because the typical scale length of these
numerical solutions of the two-dimensional nonlinear Sehro solitons is the collisionless skin depth, we would need a sup-
dinger equation fom=1, 2, and 3 are shown in Fig. 2. As porting background spanning several skin depths. This
expected, the solitonlike solutions evidently go to zero"as should pose no problem, because the ambient uniform field
for small r, and reach ammrindependent asymptotic value background could easily foot the bill. The next scale length
predicted by Eq(24). on which we encounter “bulletlike” electromagnetic struc-
More general aspects of the dynamics of the EM field cariures (which owe their origin to the baryon asymmetig
be studied mainly through numerical simulations of Egq.considerably larger than the skin depth. Thus the dark and
(17)—this is beyond the intended scope of this paper. Wevortex solitons can propagate in a slowly changing back-
content ourselves here by making a few qualitative remarksground (spreading and decreasing in intensity with the dif-
and pointing out directions for future efforts. The nonlinear-fractive spreading rate of the soliton decreasing as the back-
ity in Eqg. (17) is a faster growing functiorifaster than the ground expands adiabatically maintaining their properties,
cubio of the field amplitude, and does not exhibit saturation.until they hit baryon-asymmetry scale lengths.
One would expect, then, that the development of vortex Topological considerations will insure the preservation of
chain structures from the dark stripe soliton instability for thethe singular points during propagation. In propagating vortex
general system will be faster in comparison with the lowchains, the vortices can move away from one another, reduc-
amplitude (cubic nonlinearity case. This is, indeed, con- ing the possibility of their mutual annihilation. The propaga-
firmed by a numerical solution of E@l7); the detailed re- tion introduces elements similar to Hubble expansion—the

where the potentia¥(A) is the same as the one-dimensional
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structures “run away” from one another. These highly type solutions for this equation. The transverse instability of
speculative remarks need careful investigation. It is possibleark soliton stripes leads to the formation of a vortex chain
that the spreading of the background field may just affect thesuch that the EM fields in each vortex carry angular momen-
vortex distribution, and only a cosmological expansion will tum. Such objects could play an important role in cosmology
drive them apart. as sources of the structure formation in the MeV epoch of the
What is extremely significant is that during the evolution evolution of the Universe. In commonly adopted cosmologi-
of the fields, the integrals of motion should be preserved. It ical scenarios about the origin of the rotation of galaxies,
easy to prove, by direct calculations, that ELj7) conserves structures grow in a hierarchy by the gravitational assembly
the angular momenturi; of clumps out of subclumps. The origin of the angular mo-
mentum of galaxies, if they were formed from initial fluctua-
tions in a Friedman Universe, was suggegtadHoyle[18])
to be due to tidal interactions between the condensing system
[4]. However, it is still not clear whether this mechanism
Equation(28) for the angular momentum is a paraxial ap- gives an adequate soluti¢@9]. We hope that the suggested
proximation for the orbital angular momentutde=fdr[r  mechanism of angular momentum generation in the MeV
X (ExB)], of the EM field[16]. The angular momentum epoch of the Universe is an interesting alternative to explore
carried by the vortices i&,=mN, whereN is another con-  and examine. Electromagnetism, operating through the ver-
served quantity known as the “photon numberN  satile substrate of the-p plasma, seems to readily generate
=[dr |A,[? [17]. these highly interesting, long-lived objects—the carriers of
It follows, then, that relativistie-p plasmas are capable |arge amounts of mass, energy, and angular momentum.
of sustaining electromagnetic vortexlike structures, and thagince an initial localization of mass, energy, and angular
these structures have domains in which the EM fields carrynomentum is precisely the seed that gravity needs for even-
nonzero angular momenta, although the total angular motual structure formation, electromagnetism may have pro-
mentum of the entire system is zero. If this angular momenvided a key element in the construction of a large-scale map
tum could, somehow, be locally transferred to the surroundef the observable Universe.
ing medium, we would have a rather effective mechanism Results of this paper can also be applied to astrophysical
for imparting angular momentum to different domains of objects like pulsars, and active galactic nuclei—¢se pairs
matter in the early universe. In our next publication we will are thought to be a major constituent of the plasma emanat-
show that when baryon asymmetry effects are incorporatedng both from the pulsars, and from the inner region of the

the medium can, indeed, acquire angular momentum fromaccretion disks surrounding the central black holes.
the EM field vortices.

(M)Z=|§J dr [r, X(ATV A —c.c)l,. (28
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